OrcVIO: Object residual constrained Visual-Inertial Odometry

Mo Shan Qiaojun Feng Nikolay Atanasov

Existential Robotics Laboratory Department of Electrical and Computer Engineering University of California, San Diego

UC San Diego

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Motivation

 \bullet

Most SLAM/VIO methods produce geometric environment representations

Object recognition using deep neural networks have impressive results

Motivation

- \bullet

This work harnesses the strength of both VIO and deep neural networks We propose Object residual constrained Visual-Inertial Odometry (OrcVIO) OrcVIO outputs geometrically consistent, semantically meaningful maps

Orc VIO

Related Work

instances using 3D shape models/semantic keypoints

Parkhiya et al., 2018, ICRA

- for monocular object-SLAM. In 2018 IEEE International Conference on Robotics and Automation (ICRA)
- Computer Vision (ECCV) (pp. 301-317).

Category-specific approaches optimize the pose and shape of object

Fei, X., & Soatto, S., 2018, ECCV

• Parkhiya, P., Khawad, R., Murthy, J.K., Bhowmick, B. and Krishna, K.M., 2018, May. Constructing category-specific models • Fei, X. and Soatto, S., 2018. Visual-inertial object detection and mapping. In Proceedings of the European Conference on

Related Work

cuboids to represent objects

CubeSLAM, Yang, S. and Scherer, S., 2019, TRO

- Yang, S. and Scherer, S., 2019. Cubeslam: Monocular 3-d object slam. IEEE Transactions on Robotics, 35(4), pp.925-938.
- oriented slam. IEEE Robotics and Automation Letters, 4(1), pp.1-8.

Category-agnostic approaches use geometric shapes such as ellipsoids or

QuadricSLAM, Nicholson et al., 2018, RAL

• Nicholson, L., Milford, M. and Sünderhauf, N., 2018. Quadricslam: Dual quadrics from object detections as landmarks in object-

Object Class

- Coarse level: ellipsoid (red)
- Fine level: keypoints (blue)

"Treat nature by means of the cylinder, the sphere, the cone, everything brought into proper perspective"

Paul Cezanne

Object Instance

- Deformation (blue arrows)
- Pose (green arrow)

Problem Formulation

inertial, geometric, semantic, and bounding-box measurements

min TrajectoryCost + GeometricReprojectionCost + SemanticReprojectionCost + BoundingBoxCost + ShapeRegularization

Determine the sensor trajectory, geometric landmarks, and object states using

Objective Function

Problem. Determine the sensor trajectory \mathcal{X}^* , geometric landmarks \mathcal{L}^* , and object states \mathcal{O}^* that minimize the weighted sum of squared errors:

$$\min_{\mathcal{X},\mathcal{L},\mathcal{O}} {}^{i}w \sum_{t} \|{}^{i}\mathbf{e}_{t,t+1}\|_{i\mathbf{V}}^{2} + {}^{g}w \sum_{t,m,n} \mathbb{1}_{t,m,n} \|{}^{g}\mathbf{e}_{t,m,n}\|_{g\mathbf{V}}^{2}$$
$$+ {}^{s}w \sum_{t,i,j,k} \mathbb{1}_{t,i,k} \|{}^{s}\mathbf{e}_{t,i,j,k}\|_{s\mathbf{V}}^{2} + {}^{b}w \sum_{t,i,j,k} \mathbb{1}_{t,i,k} \|{}^{b}\mathbf{e}_{t,i,j,k}\|_{b\mathbf{V}}^{2}$$
$$+ {}^{r}w \sum_{i} \|{}^{r}\mathbf{e}\left(\mathbf{o}_{i}\right)\|^{2}$$

Geometric Keypoints

$${}^{g}\mathbf{e}(\mathbf{x},\boldsymbol{\ell},{}^{g}\mathbf{z}) \triangleq \mathbf{P}\pi\left({}_{C}\mathbf{T}^{-1}\boldsymbol{\ell}\right) - {}^{g}\mathbf{z},$$

Define the geometric keypoint error as the difference between the image projection of a geometric landmark ℓ using camera pose ${}_{C}\mathbf{T}$ and its associated keypoint observation ${}^{g}\mathbf{z}$:

Semantic Keypoints

$$^{s}\mathbf{e}(\mathbf{x}_{t},\mathbf{o},^{s}\mathbf{z}_{t,j,k}) \triangleq \mathbf{P}\pi\left(\mathbf{c}_{t},\mathbf{c}_$$

The semantic-keypoint error is defined as the difference between a semantic landmark $s_j + \delta s_j$, projected to the image plane using instance pose ${}_{O}\mathbf{T}$ and camera pose ${}_{C}\mathbf{T}_{t}$, and its corresponding semantic keypoint observation ${}^{s}\mathbf{z}_{t,j,k}$:

 $_{C}\mathbf{T}_{t}^{-1}{}_{O}\mathbf{T}\left(\underline{\mathbf{s}}_{i}+\delta\underline{\mathbf{s}}_{i}\right)\right)-{}^{s}\mathbf{z}_{t,j,k}.$

Semantic Keypoints

• StarMap is used to detect semantic keypoints • We add drop out layers in original network to obtain covariance

European Conference on Computer Vision (ECCV) (pp. 318-334).

• Zhou, X., Karpur, A., Luo, L. and Huang, Q., 2018. Starmap for category-agnostic keypoint and viewpoint estimation. In Proceedings of the

Semantic Keypoints

• We use Kalman Filter to track the semantic keypoints on an object level

Object Initialization

 $\mathbf{0} = \mathbf{P}_C \hat{\mathbf{T}}_t^{-1}$

Rearranging that leads to

 $_{C}\hat{\mathbf{R}}_{t}^{\top}\left(\boldsymbol{\xi}_{j}
ight)$ $_{C}\hat{\mathbf{R}}_{t}^{\top}\boldsymbol{\xi}_{j}-{}^{s}\mathbf{z}_{t,j}$ $\boldsymbol{\xi}_{j}-{}_{C}\hat{\mathbf{R}}_{t}{}^{s}\mathbf{z}_{t,j}$

$$^{1}{}_{O}\hat{\mathbf{T}}\underline{\mathbf{s}}_{j} - \lambda_{t,j,k}{}^{s}\mathbf{z}_{t,j,k}$$

$$- {}_{C}\hat{\mathbf{p}}_{t} = \lambda_{t,j,k} {}^{s}\mathbf{z}_{t,j,k}$$
$$, j,k\lambda_{t,j,k} = {}_{C}\hat{\mathbf{R}}_{t}^{\top}{}_{C}\hat{\mathbf{p}}_{t}$$
$$, j,k\lambda_{t,j,k} = {}_{C}\hat{\mathbf{p}}_{t}$$

Tracked Targets

Bounding-box Measurements

To define a bounding-box error, we observe that if the dual ellipsoid $\mathbf{Q}^*_{(\mathbf{u}+\delta\mathbf{u})}$ of instance i is estimated accurately, then the lines ${}^{b}\underline{\mathbf{z}}_{t,j,k}$ of the k-th bounding-box at time t should be tangent to the image plane conic projection of $\mathbf{Q}^{*}_{(\mathbf{u}+\delta\mathbf{u})}$:

 ${}^{b}\mathbf{e}(\mathbf{x},\mathbf{o},{}^{b}\mathbf{z}) \triangleq {}^{b}\mathbf{z}^{\top}\mathbf{P}_{C}\mathbf{T}^{-1}{}_{O}\mathbf{T}\mathbf{Q}^{*}_{(\mathbf{u}+\delta\mathbf{u})}O\mathbf{T}^{\top}{}_{C}\mathbf{T}^{-\top}\mathbf{P}^{\top}{}^{b}\mathbf{z}.$

Jacobians

$$\frac{\partial^{s} \mathbf{e}}{\partial_{O} \boldsymbol{\xi}} = \mathbf{P} \frac{d\pi}{d\underline{\mathbf{s}}} \left({}_{C} \hat{\mathbf{T}}_{t}^{-1} {}_{O} \hat{\mathbf{T}} \left(\underline{\mathbf{s}}_{j} + \underline{\delta} \hat{\underline{\mathbf{s}}}_{j} \right) \right) {}_{C} \hat{\mathbf{T}}_{t}^{-1} \left[{}_{O} \hat{\mathbf{T}} \left(\underline{\mathbf{s}}_{j} + \underline{\delta} \hat{\underline{\mathbf{s}}}_{j} \right) \right]^{\odot}
\frac{\partial^{s} \mathbf{e}}{\partial \delta \tilde{\mathbf{s}}_{j}} = \mathbf{P} \frac{d\pi}{d\underline{\mathbf{s}}} \left({}_{C} \hat{\mathbf{T}}_{t}^{-1} {}_{O} \hat{\mathbf{T}} \left(\underline{\mathbf{s}}_{j} + \underline{\delta} \hat{\underline{\mathbf{s}}}_{j} \right) \right) {}_{C} \hat{\mathbf{T}}_{t}^{-1} {}_{O} \hat{\mathbf{T}} \left[\frac{\mathbf{I}_{3}}{\mathbf{0}^{\top}} \right] \in \mathbb{R}^{2 \times 3}.$$

$$\frac{\partial^{b} \mathbf{e}}{\partial_{O} \boldsymbol{\xi}} = 2^{b} \underline{\mathbf{z}}^{\top} \mathbf{P}_{C} \hat{\mathbf{T}}_{t}^{-1}{}_{O} \hat{\mathbf{T}} \hat{\mathbf{Q}}_{(\mathbf{u}+\delta \hat{\mathbf{u}})O}^{*} \hat{\mathbf{T}}^{\top} \left[{}_{C} \hat{\mathbf{T}}_{t}^{-\top} \mathbf{P}^{\top b} \underline{\mathbf{z}} \right]^{\odot}$$

$$\frac{\partial^{b} \mathbf{e}}{\partial \delta \tilde{\mathbf{u}}} = (2(\mathbf{u} + \delta \hat{\mathbf{u}}) \odot \mathbf{y} \odot$$
$$\mathbf{y} \triangleq \begin{bmatrix} \mathbf{I}_{3} & \mathbf{0} \end{bmatrix}_{O} \hat{\mathbf{T}}^{\top}{}_{C} \hat{\mathbf{T}}_{t}^{-}$$

 $(\mathbf{y})^{\top} \in \mathbb{R}^{1 \times 3}$ $(\mathbf{y})^{\top} \mathbf{P}^{\top b} \mathbf{z}.$

Visual-Inertial Odometry

- observations to estimate the robot states

$${}_{I}\hat{\mathbf{p}}_{t+1}^{p} = {}_{I}\hat{\mathbf{p}}_{t} + {}_{I}\hat{\mathbf{v}}_{t}\tau + \mathbf{g}\frac{\tau^{2}}{2} + {}_{I}\hat{\mathbf{R}}_{t}\mathbf{H}_{L}\left(\tau\left(^{i}\boldsymbol{\omega}_{t} - \hat{\mathbf{b}}_{g,t}\right)\right)\left(^{i}\mathbf{a}_{t} - \hat{\mathbf{b}}_{a,t}\right)\tau^{2}$$
$${}_{I}\hat{\mathbf{v}}_{t+1}^{p} = {}_{I}\hat{\mathbf{v}}_{t} + \mathbf{g}\tau + {}_{I}\hat{\mathbf{R}}_{t}\mathbf{J}_{L}\left(\tau\left(^{i}\boldsymbol{\omega}_{t} - \hat{\mathbf{b}}_{g,t}\right)\right)\left(^{i}\mathbf{a}_{t} - \hat{\mathbf{b}}_{a,t}\right)\tau$$

$$\mathbf{J}_{L}(\boldsymbol{\omega}) = \mathbf{I}_{3} + \frac{1 - \cos \|\boldsymbol{\omega}\|}{\|\boldsymbol{\omega}\|^{2}} \boldsymbol{\omega}_{\times} + \frac{\|\boldsymbol{\omega}\| - \sin \|\boldsymbol{\omega}\|}{\|\boldsymbol{\omega}\|^{3}} \boldsymbol{\omega}_{\times}^{2}$$
$$\mathbf{H}_{L}(\boldsymbol{\omega}) = \frac{1}{2} \mathbf{I}_{3} + \frac{\|\boldsymbol{\omega}\| - \sin \|\boldsymbol{\omega}\|}{\|\boldsymbol{\omega}\|^{3}} \boldsymbol{\omega}_{\times} + \frac{2(\cos \|\boldsymbol{\omega}\| - 1) + \|\boldsymbol{\omega}\|^{2}}{2\|\boldsymbol{\omega}\|^{4}} \boldsymbol{\omega}_{\times}^{2}.$$

We propose a framework similar to MSCKF for fusing the visual and inertial

Instead of using quaternion, we use rotation matrix to parameterize the robot state $_{I}\mathbf{x}_{t} \triangleq (_{I}\mathbf{R}_{t}, _{I}\mathbf{p}_{t}, _{I}\mathbf{v}_{t}, \mathbf{b}_{g}, \mathbf{b}_{a})$ • Moreover, we have derived a closed-form integration to propagate the robot state

Qualitative Results

• Backprojection of estimated keypoints and ellipsoid

Quantitative Results

	Translation error \rightarrow	$\leq 0.5~{ m m}$		≤ 1.0 m		$\leq 1.5~{ m m}$	
Rotation error	Method	Precision	Recall	Precision	Recall	Precision	Recall
$\leq 30^{\circ}$	SubCNN [36]	0.10	0.07	0.26	0.17	0.38	0.26
	VIS-FNL [14]	0.14	0.10	0.34	0.24	0.49	0.35
	OrcVIO	0.10	0.12	0.18	0.21	0.22	0.25
$\leq 45^{\circ}$	SubCNN [36]	0.10	0.07	0.26	0.17	0.38	0.26
	VIS-FNL [14]	0.15	0.11	0.35	0.25	0.50	0.36
	OrcVIO	0.15	0.17	0.25	0.28	0.31	0.35
	SubCNN [36]	0.10	0.07	0.27	0.18	0.41	0.28
	VIS-FNL [14]	0.16	0.11	0.40	0.29	0.58	0.42
	OrcVIO	0.29	0.33	0.50	0.56	0.62	0.69

TABLE II

PRECISION-RECALL EVALUATION ON KITTI OBJECT SEQUENCES

Thank you!

http://me-llamo-sean.cf/orcvio_githubpage/

Mo Shan moshan@ucsd.edu

JACOBS SCHOOL OF ENGINEERING **Electrical and Computer Engineering**